G	uesti	on	Expected Answers		Additional Guidance	
1	(a)	(i)	2-Methylpropan-2-ol ✓	1	ALLOW methylpropan-2-ol	
	(b)		OH V	1	Formula must be skeletal AND not include any symbol except for OH	
	(c)	(i)	Same molecular formula but different structural formulae ✓	1	 ALLOW Same molecular formula but different arrangement of atoms OR Same molecular formula but different structures OR Same molecular formula but different displayed formulae DO NOT ALLOW Same molecular formula but different spatial arrangement of atoms 	
		(ii)	CH ₃ CH ₂ CH ₂ CH ₂ OH OR (CH ₃) ₂ CHCH ₂ OH ✓ ALLOW	1	ALLOW displayed formula ALLOW sticks (i.e. no H shown bonded to C)	
			OH OR OH		ALLOW DO NOT ALLOW OH shown as below CCCC OH OH OHCCC OH I Sticks OK and -OH is OK Sticks OK but OH- is not OK ALLOW correct ethers	

Quest	ion	Expected Answers		Additional Guidance	
(d)		Has O–H (bonds) OR has hydroxyl (groups) OR has hydroxy (groups) ✓ Forms hydrogen bonds with water (molecules) ✓	2	ALLOW marks from a diagram of hydrogen bonding IGNORE reference to alcohol functional group DO NOT ALLOW 'forms hydrogen bonds'	
(e)		CH ₃ COOCH ₂ CH ₂ OOCCH ₃ 1 mark for each ester end of molecule $\checkmark \checkmark$	2	ALLOW displayed formula OR skeletal formula ALLOW sticks CH ₃ COOCH ₂ CH ₂ OH shows one of the two ester groups and scores one mark	
(f)	(i)	$\begin{array}{c c} CH_3 & CH_3 & H & CH_3 \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	2	DO NOT ALLOW H_3C CH_3 H_3C OH $C=C$ CH_3 H_3C H_3C $C=C$ H CH_3 i.e. no E	
	(ii)	E/Z ✓	1	ALLOW cis-trans IGNORE geometric	
	(iii)	CH₃CH₂CH=CH₂ OR but-1-ene ✓	1	If but-1-ene given in part (i), ALLOW but-2-ene OR $CH_3CH=CHCH_3$ i.e. ECF from f(i) DO NOT ALLOW methylpropene: $H_3C - H$	

Question	Expected Answers	Marks	Additional Guidance							
From the evid	ence, candidates may have identified compound F as propanor	ne, propana	l or propanoic acid							
• The mark	scheme for F = propanone and propanal is shown in the 'Exped	cted Answei	rs' column.							
	scheme for \mathbf{F} = propanoic acid is shown in the 'Additional Guida									
	propanone or propanoic acid, then maximum score = 7; but if F is propanal then maximum score = 6									
(g)	Mark scheme for F = propanone and propanal	7	Mark scheme for F = propanoic acid							
	mass spec of E– Remember to check the spectrum Quality of Written Communication – mass spec gives M ⁺ or molecular ion of 60 OR mass spec gives parent ion of 60 OR highest m/z (ALLOW m/e) value is 60 \checkmark m/z = 45 indicates loss of CH ₃ OR $m/z = 45$ indicates presence of CH ₃ CHOH OR CH ₂ CH ₂ OH OR C ₂ H ₅ O \checkmark IR of F – Remember to check the spectrum IR shows no broad absorption between 2500 to 3300 cm ⁻¹ so no O—H bond OR no broad absorption between 2500 to 3300 cm ⁻¹ so not a carboxylic acid \checkmark		mass spec of E– Remember to check the spectrum QWC – mass spec gives M ⁺ or molecular ion of 60 OR mass spec gives parent ion of 60 OR highest m/z (OR m/e) value is $60 \checkmark$ m/z = 45 indicates loss of CH ₃ OR $m/z = 45$ indicates presence of CH ₃ CHOH OR CH ₂ CH ₂ OH OR C ₂ H ₅ O \checkmark IR of F– Remember to check the spectrum IR shows (broad) absorption somewhere between 3500 and 2500 cm ⁻¹ suggests carboxylic acid OR O–H bond \checkmark							
	IR shows absorption at 1700 cm ⁻¹ due to a C=O bond OR absorption at 1700 cm ⁻¹ indicates a ketone OR aldehyde present \checkmark		IR shows absorption at 1700 cm ⁻¹ due to C=O OR absorption at 1700 cm ⁻¹ indicates a carboxylic acid \checkmark							
	Identification and equation F is CH ₃ COCH ₃ OR propanone ✓		Identification and equation F is CH ₃ CH ₂ COOH OR propanoic acid ✓							
	E is CH ₃ CHOHCH ₃ OR propan-2-ol ✓		E is CH ₃ CH ₂ CH ₂ OH OR propan-1-ol ✓							
	$CH_{3}CHOHCH_{3} + [O] \longrightarrow CH_{3}COCH_{3} + H_{2}O \checkmark$		$CH_{3}CH_{2}CH_{2}OH + 2[O] \longrightarrow CH_{3}CH_{2}COOH + H_{2}O \checkmark$							
	If F has been incorrectly identified as propanal, mark identification and equation as ECF, so max = 2 ALLOW E is $CH_3CH_2CH_2OH \checkmark$									
	ALLOW : $CH_3CH_2CH_2OH + [O] \rightarrow CH_3CH_2CHO + H_2O \checkmark$									
	Total	19								

PhysicsAndMathsTutor.com

F322 Extra guidance for marking of Q6(g)

If E has not been identified OR if F has been identified as a ketone or aldehyde, use the left-hand mark scheme

If **F** has been identified as a **carboxylic acid**, use the **right-hand** mark scheme

Mass spec

These two marking points stand as independent marks whichever compounds have been identified.

The positive sign for fragment ions is not required. **IGNORE** negative charge. The mass spec may well be on the actual spectrum.

IR mark

These stand as **independent** marks whichever compounds have been identified. The IR analysis may well be on the actual spectrum.

Identification marks

If both structure and name are given they must **both** be correct but allow 'propanol' drawn with the correct structure because the position number of the –OH has been clearly identified

ALLOW ECF for identification of F e.g. if E is pentan-2-ol × then an answer of pentan-2-one for F will be given a mark ✓ as ECF

ALLOW identification marks for E and F from equation

Equation mark

ALLOW ECF for any correct equation showing the oxidation of any alcohol to the appropriate product.

ALLOW molecular formulae in equations,

i.e. $C_3H_7OH + [O] \rightarrow C_2H_5CHO + H_2O \checkmark$; $C_3H_8O + [O] \rightarrow C_3H_6O + H_2O \checkmark$; $C_3H_7OH + [O] \rightarrow C_2H_5COH + H_2O \checkmark$

Question	Answer	Mark	Guidance
(b)	Molecular formula for G: 2 marks Mole ratio C : H : O = $\frac{55.8}{12.0}$: $\frac{7.0}{1.0}$: $\frac{37.2}{16.0}$	7	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC
	OR 4.65 : 7.0 : 2.33/2.325 OR 2 : 3 : 1 OR C ₂ H ₃ O \checkmark Molecular formula of G C ₄ H ₆ O ₂ \checkmark		ALLOW mass of C = 0.558 x 86 or 48 AND mass of H = 0.07 x 86 or 6 AND mass of O = 0.372 x 86 = 32
	Mass spectrum for G: 2 marks		
	Peak X or peak 41 indicates $C_3H_5^+ \checkmark$ Peak Y or peak 45 indicates $COOH^+ \checkmark$		+ harge required for each response ALLOW one mark if both formulae are correct but with no charge/incorrect charge
	Infrared for G: 1 mark		ALLOW any possible fragments that contain C, H and/or O that have the correct mass. E.g. Peak X indicates C_2OH^+ , Peak Y indicates $C_2H_5O^+$ Unfeasible fragments are not allowed e.g. $C_3H_9^+$ (too many H atoms)
	Peak at 1640–1750 cm ⁻¹ indicates presence of C=O AND Peak at 2500–3300 cm ⁻¹ (indicates the presence of) –OH group linked carboxylic acid/COOH QWC ✓		LOOK ON THE SPECTRUM for labelled absorbance which can be given credit Candidates must link absorbance to bond in order to gain the mark
			ALLOW 1700 cm ⁻¹
			For 2500–3300 cm ⁻¹ , ALLOW 2900 cm ⁻¹ or any stated wavenumber with range 2500–3300 cm ⁻¹ ALLOW wavenumber range up to 2400–3500 cm ⁻¹

Question	Answer	N	Mark	Guidance
Question	Answer Structure of G: Correct structure: $H_{\downarrow} = $	2 marks	<u>Mark</u>	Guidance ALLOW structural, skeletal or displayed formula. DO NOT ALLOW ECF from incorrect molecular formula
		Total	13	

Q	uesti	on	er	Marks	Guidance
3	(a)		Only one (desired) product formed ✓	1	ALLOW no waste products OR no co-product OR all atoms on left hand side are in the desired product OR sulfuric acid is the only product IGNORE it is an addition reaction
	(b)		FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 94% award 3 marks	3	IF there is an alternative answer, check to see if there is any ECF credit possible using working below
			Moles of sulfur reacted or theoretical moles of $H_2SO_4 = 1.60 \times 10^6 \checkmark$		ALLOW 1.6×10^{6} to the calculator value $1.601246106 \times 10^{6}$ correctly rounded ALLOW 1.60 up to calculator value 1.601246106 correctly rounded
			Actual moles of $H_2SO_4 = 1.50 \times 10^6 \checkmark$		ALLOW 1.5×10^6 to the calculator value 1.498470948×10^6 correctly rounded ALLOW 1.5 up to calculator value 1.498470948 correctly rounded ALLOW theoretical mass of H ₂ SO ₄ = 157 (tonnes) up to the calculator value of 157.0822430 correctly rounded for two marks
			% yield = 94 ✓		ALLOW ECF for a percentage yield from wrong moles above but answer must have two significant figures
	(C)	(i)	Position of equilibrium – unchanged 🗸	2	
			Rate of backward reaction – decreases \checkmark		

Ques	tion	er	Marks	Guidance
(c)	(i		1	Both position of equilibrium AND explanation needed for one mark
		(equilibrium position shifts) to the left because (forward) reaction is exothermic OR equilibrium position shifts) to the left because reverse reaction is endothermic ✓		 Note: ALLOW suitable alternatives for 'to left', e.g. towards SO₂ or O₂ / towards reactants OR in backward direction OR in reverse direction OR decreases yield of SO₃/products ALLOW 'favours the left', as alternative for 'shifts equilibrium to left' ALLOW reaction gives out heat for exothermic ALLOW reaction takes in heat for endothermic direction ALLOW moves to the left in the endothermic direction ALLOW ORA if specified IGNORE responses in terms of rate
	(iii)	(equilibrium position shifts) to the left because there are more moles (of gas) on the reactant side OR	1	Both position of equilibrium AND explanation needed for one mark Note: ALLOW suitable alternatives for 'to left', e.g.: towards SO ₂ or O ₂ / towards reactants OR in backward direction OR in reverse direction OR decreases yield of
		(equilibrium position shifts) to the left because there are fewer moles (of gas) on product side ✓		SO ₃ /products ALLOW 'favours the left', as alternative for 'shifts equilibrium to left' ALLOW correct reference to volume of gases e.g. shifts to the left because there is a smaller volume of gas on the product side ALLOW ORA if specified IGNORE responses in terms of rate

Question	er	Marks	Guidance
(d) (ii	$H = \begin{bmatrix} CH_3 & H & H \\ H & - C \end{bmatrix} = \begin{bmatrix} CH_3 & H & H \\ H & - C \end{bmatrix} = \begin{bmatrix} C & - C \\ - C \\ - C \end{bmatrix} = \begin{bmatrix} C \\ - C \\ - C \\ - C \end{bmatrix} = \begin{bmatrix} C \\ - C \\ - C \\ - C \end{bmatrix} = \begin{bmatrix} C \\ - C \\ - C \\ - C \\ - C \end{bmatrix} = \begin{bmatrix} C \\ - C \\ $	1	 ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) ALLOW vertical 'bond' to any part of the OH group DO NOT ALLOW horizontal –HO in the formula ALLOW as a slip one stick with no H on in a displayed formula
	Total	13	